

INDIAN SCHOOL AL WADI AL KABIR

FIRST REHEARSAL EXAMINATION (2023-24)

SUB: Applied Mathematics (241) ISWK/P1/241/Set-1

ROLL NUMBER:		
Date: 30/11/2023	Set I	Time Allowed :3 hours
Class: XII		Maximum Marks: 80

General Instructions:

- 1. This question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Q. No						SEC	TIO	N A	. (M	CQ)			Mar	ks
1.	If <i>x</i>	: ≡	4(<i>mod</i> 7)the	n x	E		-						1
	A	{4	., 11,18,	.}	В	{11,18,2	25	.}	С	{4,8,2	12, }	D	{1,8, 15 }	
2.	2 ¹⁰	² (n	nod7) =											1
	Α		0		B	3		С		2	D		1	
3.	If 2	A =	$=\begin{pmatrix} x\\ y\\ -3 \end{pmatrix}$	2 0 - <i>z</i>	$\begin{pmatrix} 3\\ -4\\ 0 \end{pmatrix}$	and A is	a sl	kew	syr	nmetri	ic matri.	x, the	$n x + y + z = _$	1
	Α		0	В		1	С		2		D		-3	
4.	Th	e s	olution d	of tl	ne ec	quation x	:dy -	- ya	dx =	= 0 is _				1
	Α		x - y =	с	I	B xy	v = c	,	С	$\frac{x}{y}$	= <i>c</i>	D	x + y = c	
5.	In v per	wha kg	at ratio do respectiv	es a vely s	groc so as	er mix tw get a mix	o va ture	rieti woi	es o rth F	f pulses ls.92 pe	s worth R er kg?	Rs.85 p	per kg and Rs.100	1
	A		8:7	В		5:2		C		15:	8	D	8:9	

6.	Th	e value of	x if A	is d	a singul	ar mo	ıtrix	:,wh	ere A	$=\begin{pmatrix}1\\2\\2\end{pmatrix}$	$\begin{array}{ccc} 2 & 0 \\ 0 & x \\ 0 & 1 \end{array}$)		1
		A	0		В	—1	L		С	2		D	1	
7.	The	solution o	f inequ	uali	ity $\frac{x}{2} + \frac{x}{3}$	$+\frac{x}{4} \leq$	13						I	1
	A	xe[12,2	13]	B	<i>x</i> €[12	!,∞)	(С	xe(-	-∞,12]	D	xe(–∞,13]	
8.	A an is th	nd B are sc ne value of	uare n 3 <i>AB</i>	nat =	rices eacl	h of o	der :	3 suc	h that	A = -	-1 aı	B =	= 3. What	1
	Α	-9	В		-18	C		-2'	7	D			-81	
9.	If M proc	IC and AC ducts respe	repres ctively	sen y, tl	ts margir hen	nal cos	st and	d ave	erage c	ost of pi	oduc	ing x uni	its of	1
	A	$\frac{d(A)}{dx}$	$\frac{C}{c} = c$	x(N	AC — AC)		B		$\frac{d(A)}{dx}$	<u>()</u> =	$\frac{(MC-x)}{x}$	4 <i>C</i>)	
	С	$\frac{d(A)}{dz}$	$\frac{C}{c} = \frac{1}{c}$	x(A	AC - AC)		D		$\frac{d(A)}{dx}$	<u>()</u> =	$\frac{(AC - N)}{x}$	<u>1C)</u>	
10.	If ∫ ₀	$\int_{0}^{k} 3x^{2} dx =$	64, <i>tl</i>	her	$k = _{}$									1
	Α	1	В		2	C		3		D			4	
11.	If A	$=\begin{bmatrix}1&2\\-3&0\end{bmatrix}$	2]] and	d B	$=\begin{bmatrix}2\\-2\end{bmatrix}$	3 1] ti	hen .	AB =	=	_				1
	A	$\begin{bmatrix} -2 & -2 & -2 \\ 6 & -2 & -2 \end{bmatrix}$	⁵]]	B	$\begin{bmatrix} 2 & 5 \\ 6 & 9 \end{bmatrix}$	C		$\begin{bmatrix} -2 \\ -6 \end{bmatrix}$	5 _9]	Ι		$\begin{bmatrix} 2 \\ 6 \end{bmatrix}$	-5 9]	
12.	Wh	ich of the f	ollowi	ing	is not co	rrect f	for a	norn	hal dis	tributior	?			1
	Α	All norma Mean and	l curve standa	es a ard	are bell-sl deviation	haped	with Stan	ı poiı dard	nts of i norma	inflection al distrib	n at µ ution	$\pm \sigma$ is zero a	and one	-
	B	respective	ly.	·1		<u></u>		<u>.</u>				15 2010 0		_
	D	The norma The total a	al distr area ur	ribu nde	ition fund r normal	ction i curve	s dis is 1	crete	;					-
13	The the sam	average fa data were o ple sizes o	rm siz obtaine f 10 ar	e o ed f nd 8	f country from two 8 respecti	A is 1 samp ively.	91 a les w The	cres vith s degi	and for tandar ree of :	r country d deviat freedom	7 B is ons 3 is	192 acre 8 and 12	es. Assume 2 acres and	1
	A	16		B	48	С			191])		20	

14.	If the	calculate	ed va	lue o	f t <	t _v ([α), tl	nen	the	null	hypo	th	esis is:			1
	A re	ejected	B	acce	pted	С	(d	Canr eter	not mir	be ied	D	r	neither a ejected	ссер	ted nor	
15.	For tl	he given	five	valu	es 15,	24,	18, 3	3, 4	2 tl	he thr	ee ye	eai	rs movir	ng av	erages are:	1
	Α	19, 1	22, 3	3	В	1	9,25	5,31	L	С	19), 3	0, 31	D	19, 25, 33	
16.	Mr. X unde	takes a l r Flat Ra	loan te sy	of Rs vsten	s 2,00 i is	,000	with 	10 10	% a	annua	al inte	ere	est rate f	for 5	years. EMI	1
	А	₹7000		В	₹60	00		(2	₹5	000		D	,	\$4000	
17.	At wł payab	hat rate co	onve end	rted s	emi-a ch 6 m	nnu Iontl	ally v 1s be	vill (Rs 2	the 20,0	prese	nt val	ue	of a per	petu	ity of Rs 450	1
	A	5%		В	4%			C	·	5.5	5%		D		4.5%	
18.	The c constr z = 4	orner poi raints are 4x + 3y	ints ((0, (is at	of the 0), (2	feasit 5, 15)	ole r , (30	egior , 5),	1 det (30,	ern 0).	nined Then	by th Max	e s im	ystem of um of	f line	ar	1
	Α	(25, 15)		B	(30,	5)		С		(30,	0)	Ι		(0,0)	
	In the staten A) Bo B) Bo C) A D) A	followir nent of R oth A and oth A and is true bu is false b	ng qu easo l R a l R a l R a ut R i put R	ASS nestio n (R) re tru re tru is fals is tru	ERTIC ns (19 . Choo e and e and e but l se. ie.	ON-I and ose t R is R is	REAS 20), he co the c not the	SON a strorrec correc he co	N BA ater et an ect e orre	ASED ment on nswer explar ext exp	QUI of ass out c natior	ES ert of t n o tio	TIONS ion (A) the follow f A. n of A.	is fol wing	llowed by a choices.	
19.	(A) Fo (R) Th	or the cur ne slope (ve of tai	$x^2 + \frac{1}{2}$	$y^2 = 1$ $at(x_1)$	25, t , y ₁)	the s for	lope a ci	e of urv	f tang ve y =	gent f(x	at)is	(3, 4) is given l	$s - \frac{a}{d}$ by $\frac{d}{d}$	$\frac{\frac{3}{2}}{\frac{y}{x}} at(x_1, y_1).$	1
		А			В				С					D		
20.	$ \begin{array}{ c c } \hline A & & & \\ \hline R & & & \\ \hline \end{array} $	$\int_{-a}^{2} (x^3 + x)^2$	+ 1] = 0 ij) = 0	- <i>x</i>) =	-f	(x).									1
		Α			В				С					D		

| Page6/set | ISWK/Pre-Board-1/2023-24

	SECTION B	
21.	Suppose that two cards are drawn from a deck of 52 cards. Let X be the number of aces obtained, find a) the probability distribution of the number of aces obtained b) E(X).	2
22.	Two pipes A and B can fill a tank in 24 minutes and 32 minutes respectively. If both the pipes are opened simultaneously, after how much time should B be closed so that the tank is full in 18 minutes? OR Solve: $\frac{3x}{5} - \frac{2x-1}{3} > 1$	2
23.	A and B can cover a 400m race in 44 seconds and 50 seconds respectively. When A finished the race, then at what distance from the finishing line?	2
24.	Evaluate: $\int_{-1}^{1} \frac{x^2}{1+e^x} dx$ OR	2
	Find the maximum profit that a company can make if the profit function is given by $p(x) = 41 - 24x - 18x^2$.	
25.	Express $A = \begin{pmatrix} 5 & 2 & 0 \\ -1 & 4 & 3 \\ 1 & 2 & -1 \end{pmatrix}$ as a sum of symmetric and skew symmetric matrices. OR Solve using Cramer's rule: 3x - 4y = -8 $4x + 3y = 31$	2
	SECTION C	
26.	A shopkeeper has 1000 kg of wheat, part of which she sells at 18% gain and the rest at 28% gain. In total she gains 24 %. Find the quantity of wheat sold at 18% and 28%. OR A bottle is full of dettol. One-third of its dettol is taken away and an equal amount of water is poured into the bottle to fill it again. This operation is repeated three times. Find the final ratio of dettol to water in the bottle.	3
27.	 The demand and supply functions under the pure market competition are p_d = 16 - x² and p_s = 2x² + 4 respectively, where p is the price and x is the quantity of the commodity. Find a) the price p₀ and quantity q₀. b) consumer surplus using integrals when the quantity is bought and sold at equilibrium. 	3
28.	In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is $\frac{5}{6}$. What is the probability that a) he will clear all the hurdles b) he will knock down fewer than 2 hurdles.	3

29.	The mean weekly After an advertisi with standard de successful. (Use $t_{0.005} = 1.722$	y sales of a ng campaig eviation of 9 for 19 d.f.	four-wheeler n, the mean we 10 units. Tes	were 50 units eekly sales inc t whether the	per agency is reased to 55 un advertising	n 20 agencies. nits per agency campaign was	3
30.	Karan invested ₹	20,000 in a	stock of a con	npany for 6 ye	ars. The value	of his	3
	Vear 1	Vear 2	Vear 3	Vear 1	Vear 5	Vear 6	
	22.000	₹ 23.000	₹ 23.300	₹ 23.600	₹ 24.400	₹ 28.000	
	Calculate the CAC An asset costs ₹ 4 ₹ 1,00,000. Using asset and constru	GR of Karan 4,50,000 wit g linear dep uct a yearly	's investment. O th an estimate preciation met depreciation s	(Use $1.4^{\frac{1}{6}} = R$ d useful life of thod, find the chedule.	1.058). 5 years and a annual depre	scrap value of eciation of the	
31.	Solve the followi Maximize $z=4x+$ Subject to: $x \ge 0$	ng LPP grap -y , $y \ge 0$, $x = 0$	phically: ⊦ y ≤ 50 and	$3x + y \le 90.$			3
			SECT	ION D			
32.	A couple wishes $₹$ 2,00,000. If the for 10 years, wha $[(1.0075)^{-120} =$	to purchase ey can amor t is their mo 0.40973]	a house for ₹ tize the balanc onthly paymen	10,00,000 with ce at 9% per a t? What it he t	n a down paym nnum compou otal interest?	nent of Inded monthly	5
33.	Two schools A ar (x), punctuality(y 15000 for three v award Rs. 19000 prizes together an equation and forr of each prize. If $A = \begin{pmatrix} 3 & 2 \\ -1 & 4 \\ 1 & 2 \end{pmatrix}$	and B decided (7) and Obec (7) and (7) and (7) and (7) (7) and (7) and	l to award priz lience (z). Sch 3 and 2 studer values to 5,4 a s. 5000, then nation using m O ljA and henc	es to their stud nool A decided nts respectively nd 3 students represent the atrix multiplic R e show that A	ents for three v d to award a t y, while schoo respectively. I above situatio cation. Hence A. $adjA = A $	Values Honesty total of rupees of B decided to If all the three on by a matrix find the value	5
34.	A tank with rectain so that its depth is per sq. metres for least expensive tai Evaluate: $\int_{1}^{2} \frac{x^{2}}{x^{2}+3}$	ngular base s 4 m and v r the base an unk? $\frac{2}{x+2}dx$	and rectangula olume is 64 cu nd Rs 450 per O	ar sides, open a ibic metre. If b square metre f R	at the top is to building of tan for sides. Wha	be constructed k costs Rs 700 t is the cost of	5

35.	The follow India:	wing table rela	tes to the tou	ırist arrivals	(in millions)) during 201	0 to 2016 in	5				
	2010	2011	2012	2013	2014	2015	2016					
	18	20	23	25	24	28	30					
	Fit a straig number of	ght-line trend l f tourists in the	by the metho e year 2017.	od of least sq	uares. Hence	e estimate th	e expected					
		SI	ECTION E-	Case study-l	based question	ons						
36.	There are will die w Based on (<i>Given e</i> i) ii) iii)	 inere are 500 persons of age 55 years in a town. The chance that person aged 55 years will die within next 5 years is 1%. Based on the above information, answer the following questions: (<i>Given e⁻⁵ = 0.0067</i>) i) Find mean and variance of the probability distribution function ii) Find the probability that exactly 4 persons will die within next 5 years. iii) a) Find the probability that at most 3 persons aged 55 will die within next 5 years. OR b) Find the probability that more than 3 persons aged 55 will die within next 5 years. 										
7.	An aero p business cl reserves at prefer to tr Base on the i) ii)	lane can carry a lass ticket and a least 20 seats avel by econom e above informa If x and y are then the write Write the co a) How many OR b) Find the n	a maximum of a profit of ₹ 8 for executive by class than b ation answer t the number o the expression nstraint that tickets of e	f 200 passeng 00 is made o class. Howe by the executi the following: f business cla on for total pro crelates the ach type to	gers. A profit n each econo ver, at least 4 ve class. ss tickets and ofit. number of t be sold to ge	of ₹ 1500 is my class tick times as ma economics cl ickets. et maximum	made on each et. The airline ny passengers lass tickets, profit?	4				
38.	A company as a part of compound for the pay to the fund Based on i) ii) iii)	y is doing a se of insurance p ded semi-annu yment of ₹ 1,00 d are to be may the above info Find the pres What would at the beginn a) Find the a interest is 8% OR b) If the com collected af	quence of pa payment and ally. Also, th 0,000 debt. n de at the end rmation ans ent value of be the prese ing of the pe mount of each per annum pany pays ₹ fer 4 years a	ayments of R continuing he company naturing in 4 of every yea wer the follo the sequenc nt value if the eriod? ch annual de 20,000 as an t the rate of	s. 40,000 at forever, if r establishes years in suct ar. wing: e of payments posit toward nnual deposi 8% p.a. com	the end of ev noney is wo a sinking fur h a way that ts for the insur for the insur s the sinking t, what amore pounded and	ery 6 months orth 16% p.a. nd to provide contributions surance ance is done g fund if unt can be nually.	4				